Subject programme

- 1. Subject name / subject module: Basic Engineering Course
- 2. Lecture language: English
 - 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Ocetkiewicz Tomasz, mgr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

Teaching activities with the tutor																		
Mode Form of classes						Total												
of study	Laboratory work	sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	 sow	ECTS	 sow	ECTS	ECTS
Full-time studies	54	71	_															-
Part-time studies			ס															n
Credit rigor	grad	led assigi	nment															

6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in laboratory classes	54/0
Independent study of the subject – preparing for graded assignment	69/0
Participation in an exam / graded assignment / final grading	2/0
Total student workload (TSW)	125/0
ECTS credits	5
* Student's workload related to practical forms	125/0
Student's workload in classes requiring direct participation of academic teachers	54/0

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Specific learning outcomes for the subject		Form	Teaching method	Methods for testing of
Outcome symbol	Outcome description			(checking, assessing) learning outcomes
3,111501	l	Knowle	edge	
	Student possesses sufficient knowledge of		inquiry methods	Assesment of laboratory tasks.
K W11	technical standards and norms regarding	Laboratory		
K_WII	commonly used technical solutions for	classes		
	electronic device prototyping.			
		Skill	s	
	Student possesses sufficient skills to use tools		inquiry methods	Assesment of laboratory tasks.
	for electronics device prototyping to solve			
K 1100	engineering tasks. A student is able to make	Laboratory		
K_U09	decisions in the context of the quality and	classes		
	effectiveness of action and economic realities			
	as to the participa			

Subject programme

	Student has adequate skills to use		
	appropriate methods, techniques, and tools -		
K_U16	in accordance with the given specification -		
	to design and build a prototype of a simple		
	electronic device.		

9. Assessment rules / criteria for each form of education and individual grades

0% - 60%	ndst	81% - 90%	db
61% - 70%	dst	91% - 93%	db+
71% - 80%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Laboratory tasks	5; 4; 5; 4; 5(bdb; db; bdb; db; bdb)	5 * 10% + 4 * 10% + 5 * 10% + 4 * 10% + 5 *	2.3
		10% = 2.3	

10. The learning contents with the form of the class activities on which they are carried out

Laboratory work

- 1. Introduction to Matlab environment;
- 2. Introduction to Arduino;
- 3. Robot movement open-loop controller. Cause the robot to drive in a straight line, a circle, a rectangle;
- 4. Line following task. Reading values from line sensors on the under-side of the robot. Sensor calibration;
- 5. Robot movement closed-loop system. Use encoders encoder attached to the motor shafts to improve robot behavior;
- 6. Distance sensors. Reading values from bump sensors and the distance sensors(optical, ultrasonic);
- 7. Obstacle avoidance. Write code to drive robot while avoiding crashing into the objects in front. Write code to drive along the wall;
- 8. Mapping. Maze exploration write code to explore a maze and find the center. Find shortest path in a maze;
- 9. Inertial navigation. Use acceleration sensor to calculate robot speed and position;
- 10. Advanced navigation(GPS);
- 11. Kalman filtering. Write a code to implement Kalman filter to improve motion parameters estimation.

11. Required teaching aids

Laboratory classes - specialist laboratory

12. Literature:

- a. Basic literature:
 - Blum J.; Exploring Arduino; tools and techniques for engineering wizardry; ISBN 978-1-118-54936-0;
 Wiley 2013
 - Bob Dukish; Coding the Arduino; ISBN 978-1-4842-3510-2; Apress, Berkeley, CA 2018

Subject programme

- **b.** Supplementary literature:
 - Tianhong Pan, Yi Zhu; Designing Embedded Systems with Arduino; ISBN 978-981-10-4418-2; Springer 2018
 - Indira Knight; Connecting Arduino to the Web; ISBN 978-1-4842-3480-8; Apress, Berkeley, CA 2018
 - Jeff Cicolani; Beginning Robotics with Raspberry Pi and Arduino; ISBN 978-1-4842-3462-4; Apress, Berkeley, CA 2018
- **c.** Internet sources:
 - Sparkfun Tutorial learn.sparkfun.com
 - Arduino Language Reference www.arduino.cc/reference/en
 - Adafruit Learn learn.adafruit.com
 - Arduino Library List www.arduinolibraries.info
 - Last Minute Engineers Tutorials lastminuteengineers.com/electronics/arduino-projects/
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname
1. Laboratory classes	Ocetkiewicz Tomasz, mgr inż.